Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JAMA Netw Open ; 7(3): e242684, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38517441

RESUMEN

Importance: Surgery with complete tumor resection remains the main treatment option for patients with breast cancer. Yet, current technologies are limited in providing accurate assessment of breast tissue in vivo, warranting development of new technologies for surgical guidance. Objective: To evaluate the performance of the MasSpec Pen for accurate intraoperative assessment of breast tissues and surgical margins based on metabolic and lipid information. Design, Setting, and Participants: In this diagnostic study conducted between February 23, 2017, and August 19, 2021, the mass spectrometry-based device was used to analyze healthy breast and invasive ductal carcinoma (IDC) banked tissue samples from adult patients undergoing breast surgery for ductal carcinomas or nonmalignant conditions. Fresh-frozen tissue samples and touch imprints were analyzed in a laboratory. Intraoperative in vivo and ex vivo breast tissue analyses were performed by surgical staff in operating rooms (ORs) within 2 different hospitals at the Texas Medical Center. Molecular data were used to build statistical classifiers. Main Outcomes and Measures: Prediction results of tissue analyses from classification models were compared with gross assessment, frozen section analysis, and/or final postoperative pathology to assess accuracy. Results: All data acquired from the 143 banked tissue samples, including 79 healthy breast and 64 IDC tissues, were included in the statistical analysis. Data presented rich molecular profiles of healthy and IDC banked tissue samples, with significant changes in relative abundances observed for several metabolic species. Statistical classifiers yielded accuracies of 95.6%, 95.5%, and 90.6% for training, validation, and independent test sets, respectively. A total of 25 participants enrolled in the clinical, intraoperative study; all were female, and the median age was 58 years (IQR, 44-66 years). Intraoperative testing of the technology was successfully performed by surgical staff during 25 breast operations. Of 273 intraoperative analyses performed during 25 surgical cases, 147 analyses from 22 cases were subjected to statistical classification. Testing of the classifiers on 147 intraoperative mass spectra yielded 95.9% agreement with postoperative pathology results. Conclusions and Relevance: The findings of this diagnostic study suggest that the mass spectrometry-based system could be clinically valuable to surgeons and patients by enabling fast molecular-based intraoperative assessment of in vivo and ex vivo breast tissue samples and surgical margins.


Asunto(s)
Neoplasias de la Mama , Adulto , Femenino , Humanos , Persona de Mediana Edad , Masculino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/cirugía , Neoplasias de la Mama/patología , Márgenes de Escisión , Mama/cirugía , Mama/patología , Mastectomía , Espectrometría de Masas
2.
Clin Chem ; 67(9): 1271-1280, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34263289

RESUMEN

BACKGROUND: Intraoperative tissue analysis and identification are critical to guide surgical procedures and improve patient outcomes. Here, we describe the clinical translation and evaluation of the MasSpec Pen technology for molecular analysis of in vivo and freshly excised tissues in the operating room (OR). METHODS: An Orbitrap mass spectrometer equipped with a MasSpec Pen interface was installed in an OR. A "dual-path" MasSpec Pen interface was designed and programmed for the clinical studies with 2 parallel systems that facilitated the operation of the MasSpec Pen. The MasSpec Pen devices were autoclaved before each surgical procedure and were used by surgeons and surgical staff during 100 surgeries over a 12-month period. RESULTS: Detection of mass spectral profiles from 715 in vivo and ex vivo analyses performed on thyroid, parathyroid, lymph node, breast, pancreatic, and bile duct tissues during parathyroidectomies, thyroidectomies, breast, and pancreatic neoplasia surgeries was achieved. The MasSpec Pen enabled gentle extraction and sensitive detection of various molecular species including small metabolites and lipids using a droplet of sterile water without causing apparent tissue damage. Notably, effective molecular analysis was achieved while no limitations to sequential histologic tissue analysis were identified and no device-related complications were reported for any of the patients. CONCLUSIONS: This study shows that the MasSpec Pen system can be successfully incorporated into the OR, allowing direct detection of rich molecular profiles from tissues with a seconds-long turnaround time that could be used to inform surgical and clinical decisions without disrupting tissue analysis workflows.


Asunto(s)
Neoplasias Pancreáticas , Humanos , Espectrometría de Masas , Paratiroidectomía , Glándula Tiroides
3.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260388

RESUMEN

Intraoperative delineation of tumor margins is critical for effective pancreatic cancer surgery. Yet, intraoperative frozen section analysis of tumor margins is a time-consuming and often challenging procedure that can yield confounding results due to histologic heterogeneity and tissue-processing artifacts. We have previously described the development of the MasSpec Pen technology as a handheld mass spectrometry-based device for nondestructive tissue analysis. Here, we evaluated the usefulness of the MasSpec Pen for intraoperative diagnosis of pancreatic ductal adenocarcinoma based on alterations in the metabolite and lipid profiles in in vivo and ex vivo tissues. We used the MasSpec Pen to analyze 157 banked human tissues, including pancreatic ductal adenocarcinoma, pancreatic, and bile duct tissues. Classification models generated from the molecular data yielded an overall agreement with pathology of 91.5%, sensitivity of 95.5%, and specificity of 89.7% for discriminating normal pancreas from cancer. We built a second classifier to distinguish bile duct from pancreatic cancer, achieving an overall accuracy of 95%, sensitivity of 92%, and specificity of 100%. We then translated the MasSpec Pen to the operative room and predicted on in vivo and ex vivo data acquired during 18 pancreatic surgeries, achieving 93.8% overall agreement with final postoperative pathology reports. Notably, when integrating banked tissue data with intraoperative data, an improved agreement of 100% was achieved. The result obtained demonstrate that the MasSpec Pen provides high predictive performance for tissue diagnosis and compatibility for intraoperative use, suggesting that the technology may be useful to guide surgical decision-making during pancreatic cancer surgeries.


Asunto(s)
Tecnología Biomédica , Márgenes de Escisión , Espectrometría de Masas , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/cirugía , Anciano , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/cirugía , Conducto Colédoco/patología , Conducto Colédoco/cirugía , Femenino , Humanos , Cuidados Intraoperatorios , Masculino , Persona de Mediana Edad , Páncreas/patología , Páncreas/cirugía , Neoplasias Pancreáticas/patología , Estadística como Asunto
4.
PLoS Genet ; 8(3): e1002590, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22438835

RESUMEN

Upstream events that trigger initiation of cell division, at a point called START in yeast, determine the overall rates of cell proliferation. The identity and complete sequence of those events remain unknown. Previous studies relied mainly on cell size changes to identify systematically genes required for the timely completion of START. Here, we evaluated panels of non-essential single gene deletion strains for altered DNA content by flow cytometry. This analysis revealed that most gene deletions that altered cell cycle progression did not change cell size. Our results highlight a strong requirement for ribosomal biogenesis and protein synthesis for initiation of cell division. We also identified numerous factors that have not been previously implicated in cell cycle control mechanisms. We found that CBS, which catalyzes the synthesis of cystathionine from serine and homocysteine, advances START in two ways: by promoting cell growth, which requires CBS's catalytic activity, and by a separate function, which does not require CBS's catalytic activity. CBS defects cause disease in humans, and in animals CBS has vital, non-catalytic, unknown roles. Hence, our results may be relevant for human biology. Taken together, these findings significantly expand the range of factors required for the timely initiation of cell division. The systematic identification of non-essential regulators of cell division we describe will be a valuable resource for analysis of cell cycle progression in yeast and other organisms.


Asunto(s)
División Celular/genética , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Ribosomas , Saccharomyces cerevisiae , Proliferación Celular , Tamaño de la Célula , ADN/análisis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Homocigoto , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...